The Institute of Sound and Communications Engineers

Engineering Note 17.1

Measuring Thiele-Small parameters of a loudspeaker

J M Woodgate FInstSCE

DISCLAIMER

Care is taken to determine that 'Engineering Notes' do not refer to any copyrighted or patented circuit or technique, but ISCE can accept no responsibility in this connection. Users of the information in an 'Engineering Note' must satisfy themselves that they do not infringe any Intellectual Property Rights.

ISCE Engineering Notes

ISCE Engineering Note No. 17.1

Measuring Thiele-Small parameters of a loudspeaker

J. M. Woodgate F Inst SCE

1. DC resistance R_{DC}.

Measure, using an ohmmeter or bridge.

2. Total Q-factor, Q_t

Requires: Audio oscillator and amplifier, frequency counter, audio voltmeter, 1 k Ω 10 W resistor, calculator!

Connect the oscillator, to the amplifier, thence to the resistor and loudspeaker in series. Set the amplifier output voltage to 10 V (thus passing 10 mA through the loudspeaker.)

Adjust the oscillator frequency for maximum voltage across the loudspeaker and check for zero phase condition with Lissajou's Figure. Call this frequency f_0 .

Note the voltage across the loudspeaker. Divide by 10 mA to get the resistance R_0 . Divide R_0 by R_{DC} , call the result r_0 . Calculate the square root of r_0 .

Adjust the oscillator frequency so that the loudspeaker voltage corresponds to a resistance (DC resistance) × $\sqrt{r_0}$. Note the two frequencies f_1 and f_2 . Check that $\sqrt{f_1 \times f_2}$ is nearly equal to f_0 .

Calculate $Q_T = \{\sqrt{(f_1 \times f_2)}\}/\{\sqrt{r_0 \times (f_2 - f_1)}\}$

3. Equivalent volume V_{as}

The 'official' method (IEC/EN 60268-5) requires a vented box of suitable dimensions with bung for vent.

Alternative method using added mass (not very accurate!)

Determine the new resonance frequency f_3 with a known mass *M* added to the cone (Blu-Tac, or a wire ring fitted round the voice-coil former: NOT making a shorted turn!).

(*M* should be approximately equal to the cone mass, so that the resonance frequency is reduced to about 0.7 of its normal value.)

Calculate $C_{ms} = (f_0^2 - f_3^2)/Mf_1^4$ and then $C_{as} = C_{ms}S_d^2$, where S_d is the effective diaphragm area.

Then $V_{as} = \rho_0 c^2 C_{as} = 139636.48 \times C_{as}$. BUT 139636.48 is SILLY! Use 140 000!

Example: Hokutone 5 inch 120F30, 8 ohms

Determining Q_T

DC resistance 7.73 ohms Resonance at 175 Hz, with voltage 0.186 V from 10 mA current, i.e. resistance 18.6 ohms. $r_0 = 2.406$, $\sqrt{r_0} = 1.551$, 7.73 × 1.551 = 12. Voltage corresponding to 12 ohms is 0.12 V. Frequencies where voltage is 0.12 V are 156 Hz and 198 Hz. Check: $\sqrt{(156 \times 198)} = 175.75$ -OK.

 $Q_T = 175.75/\{1.551 \times (198 - 156)\} = 2.7$

For reflex box use, the Q_T should ideally be down in the 0.3 range.

Determining V_{as}

Added mass 5 grams = 0.005 kg. New resonance frequency $f_3 = 90$ Hz (So 5 g is really too much: the resonance should have not gone below $0.7 \times 175 = 123$ Hz.)

Calculate $C_{ms} = (175^2 - 90^2)/(0.005 \times 175^4) = 3.8 \times 10^{-5}$

Effective radius of cone = 50 mm, so $S_d^2 = 6.17 \times 10^{-5}$ $C_{as} = 3.8 \times 10^{-5} \times 6.17 \times 10^{-5} = 2.34 \times 10^{-9}$ Then $V_{as} = 2.34 \times 10^{-9} \times 140\ 000 = 3.27 \times 10^{-4}\ m^3 = 0.33\ L$

Data collection form

 $f_0^2 =$

DC resistance R_{DC} :

Free air resonance frequency f_0 :

Resonance voltage V_0 :

Resonance current I_0 :

Resonance resistance R_0 :

Resistance ratio *r*₀:

Root of r_0 :

Off-resonance impedance:

Corresponding voltage or current:

Lower off-resonance frequency f_1 :

Upper off-resonance frequency *f*₂:

Check: $f_1f_2 =$

Calculate: $Q_T = \{\sqrt{(f_1 \times f_2)}\}/\{\sqrt{r_0 \times (f_2 - f_1)}\}$:

Added mass M:

New resonance frequency f_3 :

Calculate $C_{ms} = (f_0^2 - f_3^2)/Mf_1^4$:

Cone diameter d_D :

Cone area S_D :

3

Calculate $C_{as} = C_{ms}S_d^2$:

Calculate $V_{as} = 140\ 000C_{as}$: